Pressure-induced commensurate stacking of graphene on boron nitride
نویسندگان
چکیده
Combining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The interaction strength between neighbouring layers, most easily controlled through their interlayer separation, can have significant influence on the electronic properties of these composite materials. Here, we demonstrate unprecedented control over interlayer interactions by locally modifying the interlayer separation between graphene and boron nitride, which we achieve by applying pressure with a scanning tunnelling microscopy tip. For the special case of aligned or nearly-aligned graphene on boron nitride, the graphene lattice can stretch and compress locally to compensate for the slight lattice mismatch between the two materials. We find that modifying the interlayer separation directly tunes the lattice strain and induces commensurate stacking underneath the tip. Our results motivate future studies tailoring the electronic properties of van der Waals heterostructures by controlling the interlayer separation of the entire device using hydrostatic pressure.
منابع مشابه
Commensurate–incommensurate transition in graphene on hexagonal boron nitride
When a crystal is subjected to a periodic potential, under certain circumstances it can adjust itself to follow the periodicity of the potential, resulting in a commensurate state. Of particular interest are topological defects between the two commensurate phases, such as solitons and domain walls. Here we report a commensurate–incommensurate transition for graphene on top of hexagonal boron ni...
متن کاملTunable band gaps in bilayer graphene-BN heterostructures.
We investigate band gap tuning of bilayer graphene between hexagonal boron nitride sheets, by external electric fields. Using density functional theory, we show that the gap is continuously tunable from 0 to 0.2 eV and is robust to stacking disorder. Moreover, boron nitride sheets do not alter the fundamental response from that of free-standing bilayer graphene, apart from additional screening....
متن کاملMetal-insulator transition in graphene on boron nitride.
Electrons in graphene aligned with hexagonal boron nitride are modeled by Dirac fermions in a correlated random-mass landscape subject to a scalar- and vector-potential disorder. We find that the system is insulating in the commensurate phase since the average mass deviates from zero. At the transition the mean mass is vanishing and electronic conduction in a finite sample can be described by a...
متن کاملContinuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition.
Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to the microscopy of nanodomains. Here we report templated growth of single cryst...
متن کامل